初中三角函数知识点总结

网上有关“初中三角函数知识点总结”话题很是火热,小编也是针对初中三角函数知识点总结寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

学好数学一定要掌握好三角函数公式,下面总结了数学三角函数重点知识点,希望能帮助大家学习数学。

三角函数概念

三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。

三角函数半角公式

sin(A/2)=±√((1-cosA)/2)

cos(A/2)=±√((1+cosA)/2)

tan(A/2)=±√((1-cosA)/((1+cosA))

三角函数倍角公式

Sin2A=2SinA*CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

锐角三角函数定义

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin):对边比斜边,即sinA=a/c

余弦(cos):邻边比斜边,即cosA=b/c

正切(tan):对边比邻边,即tanA=a/b

余切(cot):邻边比对边,即cotA=b/a

正割(sec):斜边比邻边,即secA=c/b

余割(csc):斜边比对边,即cscA=c/a

三角函数万能公式

sinα=2tan(α/2)/[1tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

三角函数积化和差公式

sinα·cosβ=(1/2)[sin(αβ)sin(α-β)]

cosα·sinβ=(1/2)[sin(αβ)-sin(α-β)]

cosα·cosβ=(1/2)[cos(αβ)cos(α-β)]

sinα·sinβ=-(1/2)[cos(αβ)-cos(α-β)]

sinαsinβ=2sin[(αβ)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(αβ)/2]sin[(α-β)/2]

cosαcosβ=2cos[(αβ)/2]cos[(α-β)/2]

积化和差的记忆口诀

积化和差得和差,余弦在后要相加;异名函数取正弦,正弦相乘取负号。

解释:

(1)积化和差最后的结果是和或者差;

(2)若两项相乘,后者为cos项,则积化和差的结果为两项相加;若不是,则结果为两项相减;

(3)若两项相乘,一项为sin,另一项为cos,则积化和差的结果中都是sin项;

(4)若两项相乘,两项均为sin,则积化和差的结果前面取负号。

初中三角函数初学入门知识

三角函数是初中数学的重要知识点,以下是我整理的初中三角函数记忆顺口溜,供参考。

初中数学三角函数记忆顺口溜

三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;

中心记上数字一,连结顶点三角形。

向下三角平方和,倒数关系是对角,

顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,

变成锐角好查表,化简证明少不了。

pi的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,

计算证明角先行,注意结构函数名,

保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;

一加余弦想余弦,一减余弦想正弦,

幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,

先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,

简单三角的方程,化为最简求解集。

特殊三角函数记忆顺口溜

30°,45°,60°这三个角的正弦值和余弦值的共同点是:分母都是2,若把分子都加上根号,则被开方数就相应地变成了1,2,3.正切的特点是将分子全部都带上根号,令分母值为3,则相应的被开方数就是3,9,27。

记忆口诀一

三十,四五,六十度,三角函数记牢固;

分母弦二切是三,分子要把根号添;

一二三来三二一,切值三九二十七;

递增正切和正弦,余弦函数要递减.

记忆口诀二

一二三三二一,戴上根号对半劈。

两边根号三,中间竖旗杆。

分清是增减,试把分母安。

正首余末三,好记又简单。

零度九十度,斜线z形连。

端点均为零,余下竖横填。

三角函数诱导公式记忆顺口溜

奇变偶不变,符号看象限。

即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。

诱导公式口诀“奇变偶不变,符号看象限”意义:

k×π/2±a(k∈z)的三角函数值

(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;

(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。

初中三角函数初学入门知识有:

1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。

2、在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B)。

3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、正弦、余弦的增减性:当0°≤a≤90°时,sina随a的增大而增大,cosa随a的增大而减小。

6、正切、余切的增减性:当0°<a<90°时,tana随a的增大而增大,cota随a的增大而减小。

三角函数记忆口诀:

“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n-(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

以cos(π/2+a)=-sinc为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。

关于“初中三角函数知识点总结”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[dazhoutv]投稿,不代表大洲号立场,如若转载,请注明出处:https://dazhoutv.com/jingyan/202507-7207.html

(5)
dazhoutv的头像dazhoutv签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • dazhoutv的头像
    dazhoutv 2025年07月29日

    我是大洲号的签约作者“dazhoutv”

  • dazhoutv
    dazhoutv 2025年07月29日

    本文概览:网上有关“初中三角函数知识点总结”话题很是火热,小编也是针对初中三角函数知识点总结寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。 学好...

  • dazhoutv
    用户072902 2025年07月29日

    文章不错《初中三角函数知识点总结》内容很有帮助